Search results for " electrospun"
showing 10 items of 13 documents
Innovative, ecofriendly biosorbent-biodegrading biofilms for bioremediation of oil- contaminated water.
2019
Immobilization of microorganisms capable of degrading specific contaminants significantly promotes bioremediation processes. In this study, innovative and ecofriendly biosorbent-biodegrading biofilms have been developed in order to remediate oil-contaminated water. This was achieved by immobilizing hydrocarbon-degrading gammaproteobacteria and actinobacteria on biodegradable oil-adsorbing carriers, based on polylactic acid and polycaprolactone electrospun membranes. High capacities for adhesion and proliferation of bacterial cells were observed by scanning electron microscopy. The bioremediation efficiency of the systems, tested on crude oil and quantified by gas chromatography, showed that…
Innovative ready to use carrier-bacteria devices for bioremediation of oil contaminated water
2018
Bioremediation, that uses microorganisms to remove environmental pollutants, is the best way of restoring the environment due to its low cost and sustainability. Immobilization of microorganisms capable of degrading specific contaminants significantly promotes bioremediation processes. An innovative ready to use bioremediation system to clean up oil-contaminated water was developed immobilizing highly performant marine and soil HC degrading bacteria, on biodegradable oil-absorbing carriers. Two soil Actinobacteria (Gordonia sp. SoCg, Nocardia sp. SoB) and two marine Gammaproteobacteria (Alcanivorax sp. SK2, Oleibacter sp.5), were immobilized on biopolymeric membranes prepared by electrospin…
Micro-Architecture Based Structural Model for Elastomeric Electrospun Scaffolds.
2010
Poly-l-Lactic Acid Nanofiber-Polyamidoamine Hydrogel Composites: Preparation, Properties, and Preliminary Evaluation as Scaffolds for Human Pluripote…
2016
Electrospun poly-l-lactic acid (PLLA) nanofiber mats carrying surface amine groups, previously introduced by nitrogen atmospheric pressure nonequilibrium plasma, are embedded into aqueous solutions of oligomeric acrylamide-end capped AGMA1, a biocompatible polyamidoamine with arg-gly-asp (RGD)-reminiscent repeating units. The resultant mixture is finally cured giving PLLA-AGMA1 hydrogel composites that absorb large amounts of water and, in the swollen state, are translucent, soft, and pliable, yet as strong as the parent PLLA mat. They do not split apart from each other when swollen in water and remain highly flexible and resistant, since the hydrogel portion is covalently grafted onto the …
Biomineral Amorphous Lasers through Light-Scattering Surfaces Assembled by Electrospun Fiber Templates
2018
New materials aim at exploiting the great control of living organisms over molecular architectures and minerals. Optical biomimetics has been widely developed by microengineering, leading to photonic components with order resembling those found in plants and animals. These systems, however, are realized by complicated and adverse processes. Here we show how biomineralization might enable the one-step generation of components for amorphous photonics, in which light is made to travel through disordered scattering systems, and particularly of active devices such as random lasers, by using electrospun fiber templates. The amount of bio-enzymatically produced silica is related to light-scatterin…
An asymmetric electrospun membrane for the controlled release of ciprofloxacin and FGF-2: Evaluation of antimicrobial and chemoattractant properties.
2021
Here, an asymmetric double-layer membrane has been designed and fabricated by electrospinning as a tool for a potential wound healing application. A hydrophobic layer has been produced by using a polyurethane-polycaprolactone (PU-PCL) copolymer and loaded with the antibacterial ciprofloxacin whereas an ion responsive hydrophilic layer has been produced by using an octyl derivative of gellan gum (GG-C8) and polyvinyl alcohol (PVA) and loaded with the growth factor FGF-2. This study investigated how the properties of this asymmetric membrane loaded with actives, were influenced by the ionotropic crosslinking of the hydrophilic layer. In particular, the treatment in DPBS and the crosslinking i…
Flexible mats as promising antimicrobial systems via integration of Thymus capitatus (L.) essential oil into PLA
2020
Aim: To develop electrospun mats loaded with Thymus capitatus (L.) essential oil ( ThymEO) and to study their morpho-mechanical and antimicrobial properties. Materials & methods: Poly(lactic acid) (PLA) mats containing ThymEO were prepared by electrospinning. The effect of ThymEO on the morpho-mechanical properties of fibers was assayed by scanning electron microscopy and dynamometer measurements. The antimicrobial activity of ThymEO delivered either in liquid or vapor phase was assessed through killing curves and invert Petri dishes method. The cytotoxicity was also investigated. Results: The mechanical properties were enhanced by integrating ThymEO into PLA. Both liquid and vapors of…
Polyaspartamide-polylactide electrospun scaffolds for potential topical release of ibuprofen
2012
Production of a Double-Layer Scaffold for the “On-Demand” Release of Fibroblast-like Limbal Stem Cells
2019
The production and characterization of a double layer scaffold, to be used as a system for the “on demand” release of corneal limbal stem cells are here reported. The devices used in the clinics and proposed so far in the scientific literature, for the release of corneal stem cells in the treatment of limbal stem cell deficiency, cannot control the in vivo space-time release of cells since the biomaterial of which they are composed is devoid of stimuli responsiveness features. Our approach was to produce a scaffold composed of two different polymeric layers that give the device the appropriate mechanical properties to be placed on the ocular surface and the possibility of releasing the stem…
Development of stimulus-sensitive electrospun membranes based on novel biodegradable segmented polyurethane as triggered delivery system for doxorubi…
2022
In this work, redox-sensitive polyurethane urea (PUU) based electrospun membranes have been exploited to chemically tether a pH-sensitive doxorubicin derivative achieved by linking a lipoyl hydrazide to the drug via a hydrazone linkage. First, the lipoyl-hydrazone-doxorubicin derivative labelled as LA-Hy-Doxo has been syn- thesized and characterized. Then, the molecule has been tethered, via a thiol-disulfide exchange reaction, to the redox-sensitive PUU (PolyCEGS) electrospun membrane. The redox-sensitive PolyCEGS PUU has been produced by using PCL-PEG-PCL polyol and glutathione-tetramethyl ester (GSSG-OMe)4 as a chain extender. The LA-Hy- Doxo tethered electrospun membrane has showed a du…